Forma parte del equipo Converse

Converse es un lugar para explorar el potencial, romper barreras y superar los límites de lo que puede ser. La empresa busca personas que puedan crecer, pensar, soñar y crear. Su cultura prospera al abrazar la diversidad y recompensar la imaginación. La marca busca triunfadores, líderes y visionarios. En Converse, se trata de que cada persona aporte habilidades y pasión a un mundo desafiante y en constante evolución para mejorar las cosas como equipo.

WHO YOU’LL WORK WITH


You will report to the Data Engineering Supervisor who is based at our Converse India Tech Center. You will work hand-in-hand with the data engineering squad, product management team, and production support team, along with a variety of dedicated Converse and Nike partners focused on technology solution delivery, architecture, and platforms. You will join a highly motivated, global team that will be a driving force in building Data and Analytic solutions for the Converse Enterprise.


WHO WE ARE LOOKING FOR


We are looking for someone who is eager to continue growing their career in the ever-evolving world of data & analytics. The right candidate can quickly pick up new programming languages, technology concepts, and frameworks. They have strong problem-solving skills and an understanding of data structures and algorithms. They thrive in a hard-working team environment and have an ability to both influence and communicate effectively with team members and business stakeholders alike.


Experience with relational SQL and scripting languages such as Python
Experience with source control tools such as GitHub
Knowledge of scalable, cloud data solutions, preferably AWS
A passion for data solutions and winning as a team
Minimum 2 years relevant work experience
Bachelor’s degree or equivalent combination of education, experience or training


WHAT YOU’LL WORK ON


As a Data Engineer on the Enterprise Data & Analytics team, you will drive work to completion with hands-on development responsibilities, and partner with the Lead Engineers to deliver quality components of a data product. You will build reusable components of a larger data pipeline to support data analytics products with guidance from experienced peers, all while working within an agile framework that focuses on delivering incremental value.


Design and build reusable components of a larger process or framework to support analytics products with guidance from experienced peers
Design and implement simple product features in collaboration with business and Technology stakeholders
Clean, prepare and optimize data for ingestion and consumption
Support the implementation of new data management projects and re-structure of the current data architecture
Implement simple automated workflows using workflow scheduling tools, such as Matillion or Brickflow
Understand and use current continuous integration, test-driven development and production deployment frameworks
Participate in design, code and test plan reviews to increase knowledge and application of best practices

Analyse and profile data for the purpose of designing components of a scalable solution
Troubleshoot straightforward data issues and perform root cause analysis to resolve product issues.

NUESTRA FORMA DE CONTRATACIÓN

1. Postúlate

Nuestros equipos están formados por diversos conjuntos de habilidades, bases de conocimientos, contribuciones, ideas y antecedentes. Queremos que encuentres la opción perfecta: revisa las descripciones de los puestos, los departamentos y los equipos para descubrir la función ideal para ti.

2. Habla con un reclutador o haz una evaluación

Si te seleccionan para un puesto corporativo, un reclutador se pondrá en contacto contigo para iniciar tu proceso de entrevistas y será tu contacto principal durante todo el proceso. En el caso de los puestos de Retail, tendrás que realizar una evaluación interactiva que incluye una conversación y cuestionarios. Te tomará entre 10 y 20 minutos completarla. Independientemente del puesto, queremos conocerte a ti, a tu yo en su totalidad, así que comparte quién eres, qué te hace singular y qué deseas hacer.

3. Entrevista

Entra en esta fase con confianza: investiga, entiende lo que buscamos y prepárate para las preguntas que nos harán saber más sobre ti y tus antecedentes.

Sneakers suspended by wires in a stairwell installation